ADER schemes on adaptive triangular meshes for scalar conservation laws
نویسندگان
چکیده
منابع مشابه
ADER Schemes on Adaptive Triangular Meshes for Scalar Conservation Laws
ADER schemes are recent finite volume methods for hyperbolic conservation laws, which can be viewed as generalizations of the classical first order Godunov method to arbitrary high orders. In the ADER approach, high order polynomial reconstruction from cell averages is combined with high order flux evaluation, where the latter is done by solving generalized Riemann problems across cell interfac...
متن کاملAder Schemes for Scalar Hyperbolic Conservation Laws in Three Space Dimensions
In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one, two and three space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obt...
متن کاملMultidimensional Schemes for Hyperbolic Conservation Laws on Triangular Meshes Qurrat-ul-Ain
In this dissertation we present two kinds of multidimensional schemes for hyperbolic systems based on triangular meshes. The first kind of schemes are evolution Galerkin schemes (EG) which are truly multidimensional schemes and the second kind is a new space-time conservative central-type method which we name a slope propagation (SP) method. Our first scheme is an extension of the EG schemes fo...
متن کاملWeakly nonoscillatory schemes for scalar conservation laws
A new class of Godunov-type numerical methods (called here weakly nonoscillatory or WNO) for solving nonlinear scalar conservation laws in one space dimension is introduced. This new class generalizes the classical nonoscillatory schemes. In particular, it contains modified versions of MinMod and UNO. Under certain conditions, convergence and error estimates for WNO methods are proved.
متن کاملAdaptive Subdivision Schemes for Triangular Meshes
Of late we have seen an increase in the use of subdivision techniques for both modeling and animation. They have given rise to a new surface called the subdivision surface which has many advantages over traditional Non Uniform Rational B-spline (NURB) surfaces. Subdivision surfaces easily address the issues related to multiresolution, re nement, scalability and representation of meshes. Many sc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2005
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2004.11.015